Neoclerodane Diterpenoids from Scutellaria pontica[†]

Benjamín Rodríguez,*,[‡] María C. de la Torre,[‡] María-Luisa Jimeno,[‡] Maurizio Bruno,^{§,⊥} Nadia Vassallo,[⊥] MariaLuisa Bondì,[⊥] Franco Piozzi,[§] and Orietta Servettaz^{||}

Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain, Dipartimento di Chimica Organica, Università di Palermo, Archirafi 20, 90123 Palermo, Italy, Istituto di Chimica e Tecnologia dei Prodotti Naturali-Consiglio Nazionale delle Ricerche (ICTPN-CNR), Archirafi 26, 90123 Palermo, Italy, and Dipartimento di Biologia, Università di Milano, Celoria 3, 20132 Milano, Italy

Received November 8, 1996[®]

Seven novel neoclerodane diterpenoids, scupontins A-G, have been isolated from the Me₂CO extract of the aerial parts of *Scutellaria pontica* (1-7), together with the known neoclerodanes scutalbin A and scutalpin M. Structures 1–7 were established by exhaustive NMR spectroscopic studies and chemical transformations. Scupontins A-D (1–4, respectively) and scupontins E (5) and F (6) possess unusual [(3'*S*,3"*S*)-3'-[(3"-acetoxybutyryl)oxy]butyryloxy and [(3'*S*,3"*S*,3"'*S*)-3'-[[3"-[(3'''-hydroxybutyryl)oxy]butyryl]oxy]butyryl]oxy substituents, respectively, attached to the C-19 position of the neoclerodane framework. In the case of the 6α , 7β -dibenzoate derivative 7 (scupontin G) its absolute configuration was established by the CD exciton chirality method.

The neoclerodane diterpenes¹ isolated from Scutellaria species (Labiatae) are of interest on account of their biological activity as insect antifeedants²⁻⁶ and as antifungal agents against plant pathogenic fungi.⁷ In continuation of our studies on Scutellaria plants^{6,8-10} we report here on the isolation and structure elucidation of seven new neoclerodane derivatives isolated from Scutellaria pontica C. Koch.

Results and Discussion

The Me₂CO extract of the aerial parts of S. pontica was subjected to extensive chromatography (see Experimental Section) to yield the already known neoclerodane diterpenoids scutalbin A¹⁰ and scutalpin M,⁸ together with seven new substances, scupontins A-G, whose structures (1–7, respectively) were established as follows.

Scupontin A (1) had the molecular formula $C_{32}H_{46}O_{12}$, and its IR spectrum showed absorptions for hydroxyl (3470 cm⁻¹), vinyl ether (3090, 1620 cm⁻¹), and ester (1740, 1250 cm⁻¹) groups. The ¹H- and ¹³C-NMR spectra of 1 (Tables 1 and 2, respectively) revealed the presence of two acetoxyl groups ($\delta_{\rm H}$ 2.02 and 1.93, both 3H, s; $\delta_{\rm C}$ 170.6 s, 170.0 s, 21.21 q, and 21.17 q) and two 3-O-acylbutyric ester moieties [δ_{H-3} 5.32 qdd and 5.21 br sext, both 1H; δ_{Me-4} 1.30 d and 1.27 d, both 3H, J =6.2, 6.3 Hz, respectively; $\delta_{\rm C}$ 169.7 s (C-1'), 169.4 s (C-1"), 40.8 t, double signal (C-2' and C-2"), 67.8 d (C-3'), 67.4 d (C-3"), and 19.89 q and 19.87 q (C-4' and C-4"); see also Table 1 for the C-2 methylene protons]. In addition, 1 showed characteristic signals of a neoclerodane diterpene [$\delta_{\rm H}$ 0.83 d, 3H, J = 6.5 Hz (Me-17) and 0.95 s, 3H (Me-20); $\delta_{\rm C}$ 16.4 q (C-17) and 14.1 q (C-20)] having a 4 α ,18-oxirane [$\delta_{\rm H}$ 2.96 dd, 1H, J_{gem} = 3.9 Hz,

 $J_{18B,3\alpha} = 2.3 \text{ Hz} (H_B-18) \text{ and } 2.25 \text{ d}, 1H, J_{gem} = 3.9 \text{ Hz}$ (H_A-18); $\delta_{\rm C}$ 62.3 s (C-4) and 48.4 t (C-18)], an esterified 6α-hydroxyl group ($\delta_{H-6\beta}$ 4.63 dd, $J_{6\beta,7\alpha} = 11.6$ Hz, $J_{6\beta,7\beta}$ = 4.6 Hz; δ_{C-6} 71.9 d), a C-19 acyloxy grouping (δ 4.80 d and 4.39 d, $J_{gem} = 12.4$ Hz; δ_{C-19} 62.3 t), and a tetrahydrofurofuran moiety involving the C-11-C-16 carbons. The presence of a C-14,C-15 olefinic double bond in this structural part was revealed by the ¹H-NMR signals at δ 4.79 (1H, t, $J_{14,13} = J_{14,15} = 2.4$ Hz, H-14) and 6.45 (1H, t, $J_{15,13} = J_{15,14} = 2.4$ Hz, H-15), and the carbon atom resonances at δ 101.8 d (C-14) and 146.9 d (C-15). (See Tables 1 and 2 for the remaining proton and carbon resonances of the C-11-C-16 fragment). All the above-mentioned functionalities, except for those of the 3-O-acylbutanoates, have been found in several neoclerodane derivatives previously isolated from *Scutellaria* species.^{2,3,6–10}

In addition, scupontin A (1) possessed a secondary hydroxyl group attached to the neoclerodane nucleus (δ_{C} 68.7 d, geminal proton as a broad multiplet at δ 3.70, $W_{1/2} = 22$ Hz). This hydroxyl group must be placed at the C-2 position because the TOCSY spectrum of 1 showed a structural fragment in which the C-1 and C-3 methylene protons, the C-10 methine proton, and the geminal proton of this hydroxyl group are involved. Double resonance experiments indicated that the C-2 hydroxyl group is equatorial, because irradiation at its geminal proton (δ 3.70 m) transformed the signal of the H-3 α axial proton (δ 2.10 td, $J_{3\alpha,3\beta} = J_{3\alpha,2\beta} = 11.8$ Hz, $J_{3\alpha,18B} = 2.3$ Hz) into a double doublet ($J_{3\alpha,3\beta} = 11.8$ Hz, $J_{3\alpha,18B} = 2.3$ Hz), thus establishing a *trans*-diaxial relationship between these two protons.¹¹

In agreement with the above conclusions, treatment of 1 with Ac_2O -pyridine yielded a derivative (8, $C_{34}H_{48}O_{13}$) for which the IR spectrum was devoid of any hydroxyl absorption and whose ¹H-NMR spectrum was identical to that of 1, except for the presence of an additional acetoxyl group (δ 2.00, 3H, s) and the downfield resonance of the H-2 β proton (δ 4.73 m). Comparison of the ¹³C-NMR spectra of 1 and 8 further supported¹¹ the presence of a 2α -hydroxyl group in scupontin A [Table 2, acetylation shifts: $\Delta \delta + 2.0$ ppm

^{*} To whom correspondence should be addressed.

Dedicated to the memory of the late Prof. F. Martín Panizo (1911-1996), CSIC, Madrid.

 ¹ Instituto de Química Orgánica, CSIC, Madrid.
 ⁸ Dipartimento di Chimica Orgánica, Università di Palermo.
 ¹ Istituto di Chimica e Tecnologia dei Prodotti Naturali–Consiglio Nazionale delle Ricerche, Palermo.

¹Dipartimento di Biologia, Università di Milano. ⁸ Abstract published in *Advance ACS Abstracts,* April 1, 1997.

Table 1. ¹H-NMR Spectral Data of Compounds 1-3, 5, 8, 10, and 12

proton(s)	1	2	3	5	8	10	12
Η-1α Η-1β	1.58 (m) ^a 2.44 (m) ^a	a a	${\sim}1.65^a$ ${\sim}2.45^a$	${\sim}1.60^a$ ${\sim}2.40^a$	${\sim}1.60^{a}$ ${\sim}2.50^{a}$	${\sim}1.60^a$ ${\sim}2.45^a$	$^{\sim}1.60^{a}$ $^{\sim}2.50^{a}$
H-2α H-2β	3.70 (m) ^b	a a	3.70 (m) ^b	3.70 (m) ^b	4.73 (m) ^b	4.68 (m) ^b	4.67 (dddd)
I-3α I-3β	2.10 (td) 1.40 (ddd)	a a	$\sim 2.10^{a}$ $\sim 1.40^{a}$	2.12 (td) ~1.40 ^a	2.16 (td) ∼1.50 ^a	2.21 (td) $\sim 1.35^{a}$	2.21 (td) 1.36 (ddd)
-Ι-6 β	4.63 (br dd)	4.67 (br dd)	4.62 (br dd)	4.62 (br dd)	4.62 (br dd)	4.63 (br dd)	4.63 (br dd)
Η-7α	1.60 (m) ^a	а	~1.60ª	~1.60 ^a	~1.60 ^a	$\sim 1.65^{a}$	1.64 (br q)
-1-7 β - 1-8 β	1.46 (m) ^a 1.46 (m) ^a	a a	${\sim}1.45^a$ ${\sim}1.45^a$	$^{\sim 1.45^a}_{\sim 1.45^a}$	$^{\sim}1.50^{a}$ $^{\sim}1.50^{a}$	$^{\sim}1.50^{a}$ $^{\sim}1.40^{a}$	1.48 (br dt) 1.40 (ddq)
$H-10\beta$	1.58 (dd)	а	$\sim 1.60^a$	$\sim 1.60^a$	$\sim 1.60^a$	$\sim 1.60^a$	1.60 (dd)
H-11α H _A -12	4.01 (dd) 1.63 (br dd)	4.01 (dd) a	4.09 (dd) ~1.60 ^a	4.02 (dd) ∼1.60 ^a	4.01 (dd) ∼1.60 ^a	4.15 (dd) ∼1.60 ^a	4.15 (dd) ∼1.60 ^a
H _B -12	1.71 (ddd)	а	${\sim}1.65^{a}$	${\sim}1.70^{a}$	${\sim}1.70^{a}$	${\sim}1.90^a$	${\sim}1.90^a$
H-13β H _A -14	3.55(qt) 4.79 (t)	3.55 (m) ^c 4.80 (t)	2.87 (m) ^{d}	3.55 (m) ^c 4.79 (t)	3.60 (m) ^c 4.79 (t)	3.25 (m) ^d 2.40 (dd)	3.25 (m) ^d 2.39 (dd)
$H_{B}-14$	4.79 (l)	4.80 (l)	a a		4.79 (t)	2.40 (dd) 2.89 (dd)	2.39 (dd) 2.88 (dd)
H _A -15	6.45 (t)	6.45 (dd)	3.85 (m)	6.45 (dd)	6.43 (dd)		
H _B -15 H-16β	6.03 (d)	6.00 (d)	3.85 (m) 5.65 (d)	6.04 (d)	5.97 (d)	6.01 (d)	6.01 (d)
Me-17	0.83 (3H, d)	0.82 (3H, d)	0.86 (3H, d)	0.83 (3H, d)	0.81 (3H, d)	0.86 (3H, d)	0.86 (3H, d)
H _A -18 ^e H _B -18 ^f	2.25 (d) 2.96 (dd)	2.19 (d) 2.96 (dd)	2.25 (d) 2.96 (dd)	2.26 (d) 2.96 (dd)	2.28 (d) 2.96 (dd)	2.29 (d) 2.98 (dd)	2.28 (d) 2.98 (dd)
H _A -19	4.39 (br d)	4.41 (br d)	4.39 (br d)	4.36 (br d)	4.39 (br d)	4.40 (br d)	4.42 (br d)
H _B -19 Me-20	4.80 (d) 0.95 (3H, s)	4.84 (d) 0.94 (3H, s)	4.81 (d) 0.94 (3H, s)	4.83 (d) 0.96 (3H, s)	4.84 (d) 0.95 (3H, s)	4.83 (d) 0.95 (3H, s)	4.83 (d) 0.96 (3H, s)
OH-2α	2.23 (br)	0.04 (011, 3)	0.94 (3H, S) a	0.90 (311, S) a			
OAc-2α OAc-6α	1.93 (3H, s)	1.94 (3H, s)	1.93 (3H, s)	1.93 (3H, s)	2.00 (3H, s) 1.93 (3H, s)	2.01 (3H, s) 1.95 (3H, s)	2.00 (3H, s) 1.95 (3H, s)
OAc-800 OAc-311 or 3111	2.02 (3H, s)	2.01 (3H, s)	2.02 (3H, s)	1.95 (511, 8)	2.01 (3H, s)	2.03 (3H, s)	2.02 (3H, s)
H _A -2′	2.54 (dd)	2.54 (dd)	2.54 (dd)	2.54 (dd)	2.53 (dd)	2.54 (dd)	2.55 (dd)
H _B -2′ H-3′	2.66 (dd) 5.32 (qdd)	2.68 (dd) 5.32 (br sext)	2.66 (dd) 5.30 (qdd)	2.66 (dd) 5.33 (br sext)	2.68 (dd) 5.30 (br sext)	2.70 (dd) 5.30 (br sext)	2.69 (dd) 5.30 (br sext
Me-4′	1.30 (3H, d)	1.29 (3H, d)	1.30 (3H, d)	1.31 (3H, d)	1.28 (3H, d)	1.30 (3H, d)	1.30 (3H, d)
H _A -2″ H _B -2″	2.45 (dd) 2.60 (dd)	2.45 (dd) 2.58 (dd)	2.45 (dd) 2.60 (dd)	2.51 (dd) 2.60 (dd)	2.44 (dd) 2.57 (dd)	2.45 (dd) 2.59 (dd)	2.46 (dd) 2.58 (dd)
H-3″	5.21 (br sext)	5.23 (br sext)	5.21 (br sext)	5.28 (br sext)	5.22 (br sext)	5.23 (br sext)	5.26 (br sex
Me-4″ H _A -2‴	1.27 (3H, d)	1.27 (3H, d)	1.27 (3H, d)	1.29 (3H, d) 2.55 (dd)	1.26 (3H, d)	1.27 (3H, d)	1.26 (3H, d) 2.45 (dd)
Hp-9‴				2.65 (dd)			2.43 (dd) 2.59 (dd)
H-3‴ Me-4‴				4.20 (br sext) 1.22 (3H, d)			5.24 (br sext 1.27 (3H, d)∉
J _{H,H} (Hz)	1 ^{<i>h</i>}	2 ^{<i>h</i>,<i>i</i>}	3 ^{<i>h</i>,<i>j</i>}	5 ^h	8 ^h	10 ^h	12 ^h
1α,2β 1α,10β	<i>k</i> 10.1	a a	k a	k a	a a	k a	12.7 12.7
$1\beta, 2\beta$	10.1 k	a	k k	k k	a		5.2
			n	л	u	k	
$1\beta.3\beta$	1.8	а	а	а	а	а	1.6
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$	1.8 2.0 11.8				a a		
$1^{eta},3^{eta}$ $1^{eta},10^{eta}$ $2^{eta},3^{lpha}$ $2^{eta},3^{eta}$	1.8 2.0 11.8 4.3	a a a a	a a k k	a a 11.7 k	a a 12.2 k	a a 12.0 k	1.6 2.4 12.2 4.9
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$	1.8 2.0 11.8	a a a	a a k k a	а а 11.7	а а 12.2	а а 12.0	1.6 2.4 12.2
$1^{\prime}\beta,3^{\prime}\beta$ $1^{\prime}\beta,10^{\prime}\beta$ $2^{\prime}\beta,3^{\alpha}\alpha$ $2^{\prime}\beta,3^{\beta}\beta$ $3^{\alpha}\alpha,3^{\beta}\beta$ $6^{\prime}\beta,7^{\alpha}\alpha$ $6^{\prime}\beta,7^{\beta}\beta$	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.8 \\ 11.6 \\ 4.6$	a a a 11.5 4.8	a a k k a 11.2 4.6	a 11.7 k 11.7 11.5 4.5	a 12.2 k 12.2 11.5 4.6	a 12.0 k 12.2 11.5 4.7	$ \begin{array}{r} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7 \end{array} $
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$	1.8 2.0 11.8 4.3 11.8 11.6 4.6 <i>a</i>	a a a 11.5 4.8 a	a k k 11.2 4.6 a	a 11.7 k 11.7 11.5 4.5 a	a 12.2 k 12.2 11.5 4.6 a	a 12.0 k 12.2 11.5 4.7 a	1.6 2.4 12.2 4.9 12.2 11.5 4.7 13.7
$1\beta, 3\beta \\ 1\beta, 10\beta \\ 2\beta, 3\alpha \\ 2\beta, 3\beta \\ 3\alpha, 3\beta \\ 6\beta, 7\alpha \\ 6\beta, 7\beta \\ 7\alpha, 7\beta \\ 7\alpha, 8\beta \\ 7\beta, 8\beta $	1.8 2.0 11.8 4.3 11.8 11.6 4.6 <i>a</i> <i>a</i>	a a a 11.5 4.8 a a a a	a a k a 11.2 4.6 a a a	a 11.7 k 11.7 11.5 4.5 a a a	a 12.2 k 12.2 11.5 4.6 a a a	a 12.0 k 12.2 11.5 4.7 a a a	$1.6 \\ 2.4 \\ 12.2 \\ 4.9 \\ 12.2 \\ 11.5 \\ 4.7 \\ 13.7 \\ 13.0 \\ 4.5 \\ 1.6 \\$
$1\beta, 3\beta \\ 1\beta, 10\beta \\ 2\beta, 3\alpha \\ 2\beta, 3\beta \\ 3\alpha, 3\beta \\ 6\beta, 7\alpha \\ 6\beta, 7\beta \\ 7\alpha, 7\beta \\ 7\alpha, 8\beta \\ 7\beta, 8\beta \\ 8\beta, 17 $	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.8 \\ 11.6 \\ 4.6 \\ a \\ a \\ 6.5 \\ 11.6 \\ 4.6 \\ a \\ 5.5 \\ 11.6 \\ 11$	a a a 11.5 4.8 a a a 6.4	a a k a 11.2 4.6 a a 6.4	a a 11.7 k 11.7 11.5 4.5 a a a 6.5	a 12.2 k 12.2 11.5 4.6 a a a 6.5	a 12.0 k 12.2 11.5 4.7 a a 6.5	$1.6 \\ 2.4 \\ 12.2 \\ 4.9 \\ 12.2 \\ 11.5 \\ 4.7 \\ 13.7 \\ 13.0 \\ 4.5 \\ 6.7 \\ 1.5 \\ 6.7 \\ 1.5 \\$
1β,3β 1β,10β 2β,3α 2β,3β 3α,3β 6β,7α 6β,7α 6β,7β 7α,7β 7α,7β 7α,8β 8β,17 11α,12A 11α,12B	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.8 \\ 11.6 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ 11.7 \\ 11.7 \\ 11.8 \\ 1$	a a a 11.5 4.8 a a 6.4 4.8 11.5	a k k 11.2 4.6 a a 6.4 5.4 11.4	$egin{array}{c} a \\ a \\ 11.7 \\ k \\ 11.7 \\ 11.5 \\ 4.5 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \end{array}$	a 12.2 k 12.2 11.5 4.6 a a 6.5 4.6 11.5	$ \begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ \end{array} $	1.62.412.24.912.211.54.713.713.04.56.75.511.2
$1\beta, 3\beta 1\beta, 10\beta 2\beta, 3\alpha 2\beta, 3\alpha 3\alpha, 3\beta 6\beta, 7\alpha 6\beta, 7\beta 7\alpha, 7\beta 7\alpha, 8\beta 7\beta, 8\beta 8\beta, 17 11\alpha, 12B 12A, 12B$	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.8 \\ 11.6 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ 12.0 \\ 12.0 \\ 11.8 \\ 1$	a a a 11.5 4.8 a a 6.4 4.8 11.5 a	a a k a 11.2 4.6 a a 6.4 5.4 11.4 a	$egin{array}{c} a \\ a \\ 11.7 \\ k \\ 11.7 \\ 11.5 \\ 4.5 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ a \end{array}$	$ \begin{array}{c} a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\end{array} $	$\begin{array}{c} a \\ a \\ 12.0 \\ k \\ 12.2 \\ 11.5 \\ 4.7 \\ a \\ a \\ 6.5 \\ 5.6 \\ 11.2 \\ a \end{array}$	$1.6 \\ 2.4 \\ 12.2 \\ 4.9 \\ 12.2 \\ 11.5 \\ 4.7 \\ 13.7 \\ 13.0 \\ 4.5 \\ 6.7 \\ 5.5 \\ 11.2 \\ a$
$1\beta, 3\beta1\beta, 10\beta2\beta, 3\alpha2\beta, 3\alpha3\alpha, 3\beta6\beta, 7\alpha6\beta, 7\alpha6\beta, 7\beta7\alpha, 7\beta7\alpha, 7\beta7\alpha, 8\beta8\beta, 1711\alpha, 12A11\alpha, 12B12A, 12B12A, 13\beta12B, 13\beta$	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.8 \\ 11.6 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ 12.0 \\ < 0.3 \\ 8.1$	a a a 11.5 4.8 a a 6.4 4.8 11.5 a k k	a a k a 11.2 4.6 a a 6.4 5.4 11.4 a k	a a 11.7 k 11.5 4.5 a a 6.5 4.5 11.7 a k k	$\begin{array}{c} a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \end{array}$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\end{array}$	1.62.412.24.912.211.54.713.713.04.56.75.511.2akk
$\begin{array}{c} 1\beta, 3\beta\\ 1\beta, 10\beta\\ 2\beta, 3\alpha\\ 2\beta, 3\alpha\\ 3\alpha, 3\beta\\ 6\beta, 7\alpha\\ 6\beta, 7\alpha\\ 7\alpha, 7\beta\\ 7\alpha, 7\beta\\ 7\alpha, 7\beta\\ 7\alpha, 8\beta\\ 7\beta, 8\beta\\ 8\beta, 17\\ 11\alpha, 12B\\ 12A, 12B\\ 12A, 13\beta\\ 12B, 13\beta\\ 13\beta, 14A\\ \end{array}$	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.6 \\ 4.6 \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ 12.0 \\ < 0.3$	a a a 11.5 4.8 a a 6.4 4.8 11.5 a k	a k k a 11.2 4.6 a a 6.4 5.4 11.4 a k k k	a a 11.7 k 11.7 11.5 4.5 a a 6.5 4.5 11.7 a k	$ \begin{array}{c} a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\end{array} $	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ \end{array}$	1.62.412.24.912.211.54.713.713.04.56.75.511.2akk4.0
$1\beta, 3\beta 1\beta, 10\beta 2\beta, 3\alpha 2\beta, 3\alpha 2\beta, 3\beta 3\alpha, 3\beta 6\beta, 7\alpha 6\beta, 7\beta 7\alpha, 7\beta 7\alpha, 8\beta 7\beta, 8\beta 8\beta, 17 11\alpha, 12B 12A, 12B 12A, 13\beta 12B, 13\beta 13\beta, 14B$	$1.8 \\ 2.0 \\ 11.8 \\ 4.3 \\ 11.8 \\ 11.6 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ 12.0 \\ < 0.3 \\ 8.1$	a a a 11.5 4.8 a a 6.4 4.8 11.5 a k k	a k k a 11.2 4.6 a a 6.4 5.4 11.4 a k k k k k 0	a a 11.7 k 11.5 4.5 a a 6.5 4.5 11.7 a k k	$\begin{array}{c} a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \end{array}$	$ \begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4 \end{array} $	1.62.412.24.912.211.54.713.713.04.56.75.511.2akkk4.010.5
$1\beta, 3\beta \\ 1\beta, 10\beta \\ 2\beta, 3\alpha \\ 2\beta, 3\alpha \\ 3\alpha, 3\beta \\ 6\beta, 7\alpha \\ 6\beta, 7\alpha \\ 6\beta, 7\beta \\ 7\alpha, 7\beta \\ 7\alpha, 7\beta \\ 7\alpha, 8\beta \\ 8\beta, 17 \\ 11\alpha, 12B \\ 12A, 12B \\ 12A, 12B \\ 12A, 13\beta \\ 12B, 13\beta \\ 13\beta, 14A \\ 13\beta, 15 \\ 13\beta, 15 \\ 13\beta, 16\beta \\ \end{cases}$	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\end{array}$	a a a 11.5 4.8 a a 6.4 4.8 11.5 a k k k k 2.6	a k k a 11.2 4.6 a a 6.4 5.4 11.4 a k k k k k k 0 5.1	$egin{array}{c} a \\ a \\ 11.7 \\ k \\ 11.7 \\ 11.5 \\ 4.5 \\ a \\ a \\ a \\ 6.5 \\ 4.5 \\ 11.7 \\ a \\ k \\ k \\ k \\ 2.7 \end{array}$	$a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \\ k \\ 2.7$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\end{array}$	$\begin{array}{c} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7\\ 13.7\\ 13.0\\ 4.5\\ 6.7\\ 5.5\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.5\\ 5.5\\ \end{array}$
$1\beta, 3\beta \\ 1\beta, 10\beta \\ 2\beta, 3\alpha \\ 2\beta, 3\alpha \\ 2\beta, 3\beta \\ 3\alpha, 3\beta \\ 6\beta, 7\alpha \\ 6\beta, 7\beta \\ 7\alpha, 7\beta \\ 7\alpha, 8\beta \\ 7\beta, 8\beta \\ 8\beta, 17 \\ 11\alpha, 12B \\ 12A, 12B \\ 12A, 12B \\ 12A, 12B \\ 12A, 13\beta \\ 13\beta, 14B \\ 13\beta, 14B \\ 13\beta, 15 \\ 12B, 15 \\ 10\beta \\ 10$	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\end{array}$	a a a 11.5 4.8 a a 6.4 4.8 11.5 a k k 2.6 2.4	a k k a 11.2 4.6 a a 6.4 5.4 11.4 a k k k k k 0	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ \end{array}$	$ \begin{array}{c} a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\\ k\\ 2.7\\ 2.1\\ \end{array} $	$ \begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4 \end{array} $	1.62.412.24.912.211.54.713.713.04.56.75.511.2akkk4.010.5
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\alpha$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12B$ $12A, 12B$ $12A, 12B$ $12A, 12B$ $12A, 12B$ $12A, 12B$ $13\beta, 14B$ $13\beta, 14B$ $13\beta, 14B$ $14A, 14B$ $14A, 15A$ $18A, 18B$	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 3.9\end{array}$	$ \begin{array}{c} a\\a\\a\\a\\11.5\\4.8\\a\\a\\a\\6.4\\4.8\\11.5\\a\\k\\k\\2.6\\2.4\\6.2\\2.6\\3.9\end{array} $	a a k a 11.2 4.6 a a 6.4 5.4 11.4 a k k k k k k 0 5.1 a 3.9	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\end{array}$	$ \begin{array}{c} a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\\ k\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 3.9\end{array} $	$a \\ a \\ 12.0 \\ k \\ 12.2 \\ 11.5 \\ 4.7 \\ a \\ a \\ 6.5 \\ 5.6 \\ 11.2 \\ a \\ k \\ k \\ 4.0 \\ 10.4 \\ 5.5 \\ 18.7 \\ 3.9 $	1.62.412.211.54.713.713.04.56.75.511.2akkk4.010.55.518.74.0
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12B$ $12A, 12B$ $12A, 12B$ $12A, 13\beta$ $12B, 13\beta$ $13\beta, 14A$ $13\beta, 15$ $13\beta, 16\beta$ $14A, 14B$ $14A, 15A$ $18B, 3\alpha$	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\end{array}$	$ \begin{array}{c} a\\ a\\ a\\ a\\ a\\ 11.5\\ 4.8\\ a\\ a\\ a\\ 6.4\\ 4.8\\ 11.5\\ a\\ k\\ 2.6\\ 2.4\\ 6.2\\ 2.6\\ 3.9\\ 2.3\end{array} $	a a k a 11.2 4.6 a a a 6.4 5.4 11.4 a k k k k k k 0 5.1 a 3.9 2.2	$ \begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ \end{array} $	$a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 3.9 \\ 2.2$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\end{array}$	$\begin{array}{c} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7\\ 13.7\\ 13.0\\ 4.5\\ 6.7\\ 5.5\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.5\\ 5.5\\ 18.7\\ 4.0\\ 2.2\\ \end{array}$
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12B$ $12A, 12B$ $12A, 12B$ $12A, 13\beta$ $12B, 13\beta$ $13\beta, 14A$ $13\beta, 14B$ $13\beta, 14B$ $13\beta, 16\beta$ $14A, 15A$ $18B, 3\alpha$ $19A, 19B$ $19A, 6\beta$	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 6.2\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ \end{array}$	$\begin{array}{c} a\\ a\\ a\\ a\\ a\\ a\\ 11.5\\ 4.8\\ a\\ a\\ a\\ 6.4\\ 4.8\\ 11.5\\ a\\ k\\ k\\ 2.6\\ 2.4\\ 6.2\\ 2.6\\ 2.4\\ 6.2\\ 2.6\\ 3.9\\ 2.3\\ 12.1\\ < 0.5\end{array}$	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ 6.4\\ 5.4\\ 11.4\\ a\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ 0\\ 5.1\\ a\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\end{array}$	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\end{array}$	$a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 3.9 \\ 2.2 \\ 12.3 \\ < 0.5 \\ \end{bmatrix}$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ \end{array}$	$\begin{array}{c} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7\\ 13.7\\ 13.0\\ 4.5\\ 6.7\\ 5.5\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ 10.5\\ 5.5\\ 18.7\\ 4.0\\ 2.2\\ 12.5\\ < 0.5\\ \end{array}$
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12B$ $12A, 12\beta$ $12A, 12\beta$ $12A, 13\beta$ $13\beta, 14B$ $13\beta, 14B$ $13\beta, 14B$ $13\beta, 14B$ $13\beta, 16\beta$ 14A, 15A $18B, 3\alpha$ 19A, 19B $19A, 6\beta$ 2'A, 2'B	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ 15.6\end{array}$	$\begin{array}{c} a\\ a\\ a\\ a\\ a\\ a\\ 11.5\\ 4.8\\ a\\ a\\ a\\ 6.4\\ 4.8\\ 11.5\\ a\\ k\\ k\\ 2.6\\ 2.4\\ 6.2\\ 2.6\\ 3.9\\ 2.3\\ 12.1\\ < 0.5\\ 15.7\end{array}$	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ 6.4\\ 5.4\\ 11.4\\ a\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ 0\\ 5.1\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\\ 15.6\end{array}$	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\\ 15.6\end{array}$	$a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 3.9 \\ 2.2 \\ 12.3 \\ < 0.5 \\ 16.0 \\ 10.5 \\ 10.$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\end{array}$	$\begin{array}{c} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7\\ 13.7\\ 13.0\\ 4.5\\ 6.7\\ 5.5\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.5\\ 5.5\\ 18.7\\ 4.0\\ 2.2\\ 12.5\\ < 0.5\\ 16.0\\ \end{array}$
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12A$ $11\alpha, 12B$ 12A, 12B 12A, 12B $12A, 13\beta$ $12B, 13\beta$ $13\beta, 14A$ $13\beta, 14B$ $13\beta, 16\beta$ 14A, 14B 14A, 14B 14A, 15A $18B, 3\alpha$ 19A, 19B $19A, 6\beta$ 2'A, 3' 2'B, 3'	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ 15.6\\ 5.4\\ 7.7\end{array}$	$\begin{array}{c} a\\ $	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ a\\ 6.4\\ 11.4\\ a\\ k\\ c\\ 0\\ 5.1\\ a\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\end{array}$	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\end{array}$	$a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 3.9 \\ 2.2 \\ 12.3 \\ < 0.5 \\ 16.0 \\ 5.7 \\ 7.4 \\ 4$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\\ 5.7\\ 7.5\end{array}$	1.6 2.4 12.2 4.9 12.2 11.5 4.7 13.7 13.0 4.5 6.7 5.5 11.2 a k k 4.0 10.5 5.5 18.7 4.0 2.2 12.5 < 0.5 16.0 5.7 7.5
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12B$ 12A, 12B 12A, 12B $12A, 13\beta$ $13\beta, 14A$ $13\beta, 14B$ $13\beta, 16\beta$ 14A, 14B 14A, 15A $18B, 3\alpha$ $19A, 6\beta$ 2'A, 2'B 2'A, 3' 2'B, 3' 3', 4'	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 6.2\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ \end{array}$	$\begin{array}{c} a\\ $	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ a\\ 6.4\\ 5.4\\ 11.4\\ a\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ 0\\ 5.1\\ a\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.3\end{array}$	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.2 \end{array}$	$\begin{array}{c} a\\ a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\\ k\\ k\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 3.9\\ 2.2\\ 12.3\\ < 0.5\\ 16.0\\ 5.7\\ 7.4\\ 6.3\end{array}$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\\ 5.7\\ 7.5\\ 6.3\\ \end{array}$	1.6 2.4 12.2 4.9 12.2 11.5 4.7 13.7 13.0 4.5 6.7 5.5 11.2 a k 4.0 10.5 5.5 18.7 4.0 2.2 12.5 < 0.5 16.0 5.7 7.5 6.2
$1^{\beta},3^{\beta}$ $1^{\beta},10^{\beta}$ $2^{\beta},3\alpha$ $2^{\beta},3\alpha$ $3^{\alpha},3^{\beta}$ $6^{\beta},7\alpha$ $6^{\beta},7\alpha$ $7^{\alpha},8\beta$ $7^{\beta},8\beta$ $8^{\beta},17$ $11^{\alpha},12B$ 12A,12B 12A,12B 12A,12B 12A,12B 12A,12B 12A,12B 12A,12B $13^{\beta},14A$ $13^{\beta},14B$ $13^{\beta},14B$ $13^{\beta},14B$ $13^{\beta},14B$ $13^{\beta},14B$ $13^{\beta},14B$ $13^{\beta},16\beta$ 14A,14B 14A,15A $18B,3\alpha$ 19A,19B $19A,6\beta$ $2^{\prime}A,2^{\prime}B$ $2^{\prime}A,2^{\prime}B$	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ \end{array}$	a a a a a 11.5 4.8 a a a 6.4 4.8 11.5 a k k k 2.6 2.4 6.2 2.6 3.9 2.3 12.1 < 0.5 15.7 5.8 7.5 6.0 0 15.4	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ 6.4\\ 5.4\\ 11.4\\ a\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ 0\\ 5.1\\ a\\ 3.9\\ 2.2\\ 12.4\\ <0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.3\\ 15.7\end{array}$	$\begin{array}{c} a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ <0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\end{array}$	$a \\ a \\ 12.2 \\ k \\ 12.2 \\ 11.5 \\ 4.6 \\ a \\ a \\ a \\ 6.5 \\ 4.6 \\ 11.5 \\ a \\ k \\ k \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 2.1 \\ 6.3 \\ 2.7 \\ 3.9 \\ 2.2 \\ 12.3 \\ < 0.5 \\ 16.0 \\ 5.7 \\ 7.4 \\ 6.3 \\ 15.4 \\ 15.4 \\ 15.4 \\ 12.2 \\ 12.2 \\ 12.2 \\ 12.3 \\ 15.4 \\$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\\ 5.7\\ 7.5\\ 6.3\\ 15.3\\ \end{array}$	1.6 2.4 12.2 4.9 12.2 11.5 4.7 13.0 4.5 6.7 5.5 11.2 a k k 4.0 10.5 5.5 18.7 4.0 2.2 12.5 < 0.5 16.0 5.7 7.5 6.2 15.4
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12A$ $11\alpha, 12B$ $12A, 12\beta$ $12A, 12\beta$ $12A, 13\beta$ $12B, 13\beta$ $13\beta, 14A$ $13\beta, 14B$ $13\beta, 15$ $13\beta, 16\beta$ 14A, 14B 14A, 15A 18A, 18B $18B, 3\alpha$ 19A, 19B $19A, 6\beta$ 2'A, 2'B 2'B, 3'' 2''B, 3''	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ 15.7\\ $	$\begin{array}{c} a\\ $	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ a\\ a\\ 6.4\\ 11.4\\ a\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ 0\\ 5.1\\ a\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.3\\ 15.7\\ 6.3\\ 15.7\\ 6.1\\ 7.1\\ 6.1\\ \end{array}$	$\begin{array}{c} a\\ a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ 6.2\\ 15.7\\ 6.1\\ 7.3\end{array}$	$\begin{array}{c} a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\\ k\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 3.9\\ 2.2\\ 12.3\\ < 0.5\\ 16.0\\ 5.7\\ 7.4\\ 6.3\\ 15.4\\ 5.7\\ 7.5\end{array}$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\\ 5.7\\ 7.5\\ 6.3\\ 15.3\\ 5.8\\ 7.5\\ \end{array}$	$\begin{array}{c} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7\\ 13.7\\ 13.0\\ 4.5\\ 6.7\\ 5.5\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.5\\ 5.5\\ 18.7\\ 4.0\\ 2.2\\ 12.5\\ < 0.5\\ 16.0\\ 5.7\\ 7.5\\ 6.2\\ 15.4\\ 5.7\\ 7.5\\ \end{array}$
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12A$ 12A, 12B $12A, 13\beta$ $12B, 13\beta$ $12B, 13\beta$ $13\beta, 14A$ $13\beta, 14B$ $13\beta, 16\beta$ 14A, 14B 14A, 15A $18B, 3\alpha$ 19A, 19B $19A, 6\beta$ 2'A, 2'B 2'A, 3'' 2''B, 3'' 3'', 4''	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 2.0\\ 11.8\\ 1.6\\ 4.6\\ a\\ a\\ a\\ a\\ a\\ a\\ c\\ 5.4\\ 5\\ 11.7\\ 12.0\\ <0.3\\ 8.1\\ 2.4\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ <0.2\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ 6.1\\ \end{array}$	$\begin{array}{c} a\\ $	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ a\\ a\\ 6.4\\ 5.4\\ 11.4\\ a\\ k\\ c\\ 0\\ 5.1\\ a\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.3\\ 15.7\\ 6.3\\ 15.7\\ 6.1\end{array}$	$\begin{array}{c} a\\ a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ 6.1\\ 7.3\\ 6.3\\ \end{array}$	$\begin{array}{c} a\\ a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\\ k\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 3.9\\ 2.2\\ 12.3\\ < 0.5\\ 16.0\\ 5.7\\ 7.4\\ 6.3\\ 15.4\\ 5.7\end{array}$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\\ 5.7\\ 7.5\\ 6.3\\ 15.3\\ 5.8\end{array}$	$\begin{array}{c} 1.6\\ 2.4\\ 12.2\\ 4.9\\ 12.2\\ 11.5\\ 4.7\\ 13.7\\ 13.0\\ 4.5\\ 6.7\\ 5.5\\ 11.2\\ a\\ k\\ 4.0\\ 10.5\\ 5.5\\ 18.7\\ 4.0\\ 2.2\\ 12.5\\ < 0.5\\ 16.0\\ 5.7\\ 7.5\\ 6.2\\ 15.4\\ 5.7\\ 7.5\\ 6.2\\ \end{array}$
$1\beta, 3\beta$ $1\beta, 10\beta$ $2\beta, 3\alpha$ $2\beta, 3\beta$ $3\alpha, 3\beta$ $6\beta, 7\alpha$ $6\beta, 7\alpha$ $6\beta, 7\beta$ $7\alpha, 7\beta$ $7\alpha, 8\beta$ $7\beta, 8\beta$ $8\beta, 17$ $11\alpha, 12A$ 12A, 12B 12A, 12B 12A, 12B $12A, 13\beta$ $12B, 13\beta$ $13\beta, 14A$ $13\beta, 14B$ $13\beta, 15$ $13\beta, 16\beta$ 14A, 14B 14A, 15A 18A, 18B $18B, 3\alpha$ $19A, 6\beta$ 2'A, 2'B 2'B, 3' 3', 4' 2''B, 3'' 2''B, 3''	$\begin{array}{c} 1.8\\ 2.0\\ 11.8\\ 4.3\\ 11.8\\ 11.6\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ 12.0\\ < 0.3\\ 8.1\\ 2.4\\ 2.4\\ 2.4\\ 2.4\\ 6.2\\ 2.4\\ 3.9\\ 2.3\\ 12.4\\ < 0.2\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ 15.7\\ $	$\begin{array}{c} a\\ $	$\begin{array}{c} a\\ a\\ k\\ k\\ a\\ 11.2\\ 4.6\\ a\\ a\\ a\\ a\\ a\\ 6.4\\ 11.4\\ a\\ k\\ k\\ k\\ k\\ k\\ k\\ k\\ 0\\ 5.1\\ a\\ a\\ 3.9\\ 2.2\\ 12.4\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.3\\ 15.7\\ 6.3\\ 15.7\\ 6.1\\ 7.1\\ 6.1\\ \end{array}$	$\begin{array}{c} a\\ a\\ a\\ 11.7\\ k\\ 11.7\\ 11.5\\ 4.5\\ a\\ a\\ a\\ a\\ 6.5\\ 4.5\\ 11.7\\ a\\ k\\ k\\ 2.7\\ 2.0\\ 6.2\\ 2.7\\ 3.8\\ 2.1\\ 12.2\\ < 0.5\\ 15.6\\ 5.4\\ 7.7\\ 6.2\\ 15.7\\ 6.2\\ 15.7\\ 6.1\\ 7.3\end{array}$	$\begin{array}{c} a\\ a\\ 12.2\\ k\\ 12.2\\ 11.5\\ 4.6\\ a\\ a\\ a\\ a\\ 6.5\\ 4.6\\ 11.5\\ a\\ k\\ k\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 2.1\\ 6.3\\ 2.7\\ 3.9\\ 2.2\\ 12.3\\ < 0.5\\ 16.0\\ 5.7\\ 7.4\\ 6.3\\ 15.4\\ 5.7\\ 7.5\end{array}$	$\begin{array}{c} a\\ a\\ 12.0\\ k\\ 12.2\\ 11.5\\ 4.7\\ a\\ a\\ a\\ 6.5\\ 5.6\\ 11.2\\ a\\ k\\ k\\ k\\ 4.0\\ 10.4\\ 5.5\\ 18.7\\ 3.9\\ 2.1\\ 12.3\\ < 0.5\\ 15.9\\ 5.7\\ 7.5\\ 6.3\\ 15.3\\ 5.8\\ 7.5\\ \end{array}$	1.6 2.4 12.2 4.9 12.2 11.5 4.7 13.7 13.0 4.5 6.7 5.5 11.2 a k k 4.0 10.5 5.5 18.7 4.0 2.2 12.5 < 0.5 16.0 5.7 7.5 6.2 15.4 5.7 7.5

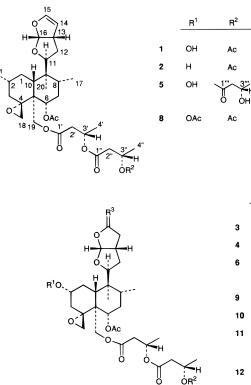
^{*a*} This is an overlapped signal. ^{*b*} This signal shows a $W_{1/2} = 22$ Hz. ^{*c*} This signal shows a $W_{1/2} = 15$ Hz. ^{*d*} This signal shows a $W_{1/2} = 24$ Hz. ^{*e*} This is the exo hydrogen with respect to ring B. ^{*f*} This is the endo hydrogen with respect to ring B. ^{*g*} These assignments may be interchanged. ^{*h*} In all compounds the $J_{1\alpha,1\beta}$ value was not measured due to overlapping. ^{*i*} In this compound the J values that concern the H-2 α and H-2 β protons were not measured due to overlapping of these signals. ^{*j*} In this compound J values concerning the 2H-14 and 2H-15 protons were not determined. ^{*k*} Value was not determined.

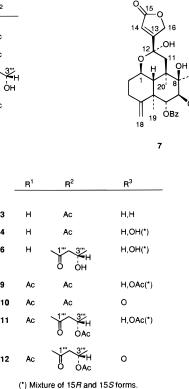
Table 2. ¹³C-NMR Spectral Data of Compounds 1-3, 5, 8, 10, and 12

C-1 C-2 C-3 C-4	32.1 (t) 68.7 (d) 41.0 (t) 62.3 (s)	22.2 (t) 25.0 (t)	31.9 (t)	32.0 (t)	28.1 (t)	07.0 (1)	88 8 (i)
C-3 C-4	41.0 (t)				20.1 (L)	27.9 (t)	28.0 (t)
C-4	41.0 (t)		68.6 (d)	69.0 (d)	70.7 (d)	70.5 (d)	70.7 (d)
C-4		32.7 (t)	41.8 (t)	41.5 (t)	38.3 (t)	38.0 (t)	38.1 (t)
	02.3 (3)	64.9 (s)	62.3 (s)		62.1 (s)	61.9 (s)	62.1 (s)
C-5	44.2 (s)	45.5 (s)	44.2 (s)		44.7 (s)	44.4 (s)	44.6 (s)
C-6	71.9 (d)	71.9 (d)	71.9 (d)	72.0 (d)	71.9 (d)	71.5 (d)	71.6 (d)
C-7	33.4 (t)	33.4 (t)	33.4 (t)	33.0 (t)	33.4 (t)	33.1 (t)	33.2 (t)
C-8	36.1 (d)	36.2 (d)	35.6 (d)	36.0 (d)	36.4 (d)	36.1 (d)	36.2 (d)
C-9	39.9 (s)	40.0 (s)	40.3 (s)		40.1 (s)	40.2 (s)	40.3 (s)
C-10	44.5 (d)	48.4 (d)	44.1 (d)	44.5 (d)	44.4 (d)	43.7 (d)	43.8 (d)
C-11	84.2 (d)	84.5 (d)	84.7 (d)	84.0 (d)	84.7 (d)	84.5 (d)	84.6 (d)
C-12	31.3 (t)	31.2 (t)	32.4 (t)	31.0 (t)	31.2 (t)	31.9 (t)	32.0 (t)
C-13	46.0 (d)	46.0 (d)	42.0 (d)	46.0 (d)	46.0 (d)	38.0 (d)	38.1 (d)
C-14	101.8 (d)	101.9 (d)	32.5 (t)	102.0 (d)	101.9 (d)	35.1 (t)	35.3 (t)
C-15	146.9 (d)	146.9 (d)	68.2 (t)	147.0 (d)	146.9 (d)	175.0 (s)	175.0 (s)
C-16	107.6 (d)	107.7 (d)	107.6 (d)	108.0 (d)	107.7 (d)	106.7 (d)	106.8 (d)
C-17	16.4 (q)	16.4 (q)	16.4 (q)	16.0 (q)	16.1 (q)	16.0 (q)	16.2 (q)
C-18	48.4 (t)	48.6 (t)	48.3 (t)	48.0 (t)	48.3 (t)	48.2 (t)	48.3 (t)
C-19	62.3 (t)	61.9 (t)	62.1 (t)	62.0 (t)	61.9 (t)	61.6 (t)	61.7 (t)
C-20	14.1 (q)	14.1 (q)	13.9 (q)	13.5 (q)	14.1 (q)	13.7 (q)	13.9 (q)
2α-0Ac					169.9 (s)	169.8 (s)	170.0 (s)
					21.1 (q)	21.0 (q)	21.1 (q)
6α-ΟΑς	170.0 (s)	170.1 (s)	169.9 (s)		170.0 (s)	170.0 (s)	170.1 (s)
	21.17 (q)	21.1 (q)	21.0 (q)	20.0 (q)	21.2 (q)	21.0 (q)	21.1 (q)
3"- or 3"'-OAc	170.6 (s)	170.1 (s)	170.3 (s)		170.4 (s)	170.5 (s)	170.6 (s)
	21.21 (q)	21.3 (q)	21.0 (q)		21.1 (q)	21.1 (q)	21.3 (q)
C-1′	169.7 (s)	169.9 (s)	169.6 (s)		169.7 (s)	169.6 (s)	169.7 (s)
C-2′	40.8 (t)	41.0 (t)	40.8 (t)	41.0 (t)	40.9 (t) ^b	40.9 (t)	40.9 (t)
C-3′	67.8 (d)	67.6 (d)	67.7 (d)	68.0 (d)	67.6 (d)	67.4 (d)	67.6 (d)
C-4′	19.87 (q) ^c	19.8 (q)	19.8 (q)	19.5 (q)	19.9 (q)	19.7 (q)	19.7 (q)
C-1″	169.4 (s)	169.3 (s)	169.3 (s)		169.2 (s)	169.2 (s)	169.2 (s)
C-2″	40.8 (t)	40.8 (t)	40.8 (t)	41.0 (t)	41.1 (t) ^b	40.7 (t)	40.9 (t)
C-3″	67.4 (d)	67.2 (d)	67.2 (d)	68.0 (d)	67.2 (d)	67.1 (d)	67.5 (d)
C-4″	19.89 (q) ^c	19.9 (q)	19.8 (q)	19.5 (q)	19.9 (q)	19.7 (q)	19.8 (q)
C-1‴	-	-	-	-	-	-	169.1 (s)
C-2‴				41.0 (t)			40.8 (t)
C-3‴				65.0 (d)			67.2 (d)
C-4'''				22.0 (q)			19.9 (q)

^{*a*} Only protonated carbons were measured from the HMQC spectrum; $\delta_{\rm C}$ values for **5** are accurate to \pm 0.5 ppm. ^{*b.c*} These assignments may be reversed.

for the C-2 α -carbon, and -4.0 and -2.7 ppm for the β -carbons (C-1 and C-3, respectively)].


The location of the two acetates and the two 3-Oacylbutyrates of scupontin A as well as their arrangement were unambiguously established from the HMBC spectrum. The H-6 β proton of **1** (δ 4.63 br dd) showed a correlation through three bonds with a carbonyl carbon belonging to an acetoxyl group (δ 170.0 s), thus establishing that one of the acetates is attached to the C-6 α position. This assignment, together with all the above deductions, implied that 1 possesses a [3'-[(3''acetoxybutyryl)oxy]butyryl]oxy substituent at the C-19 position. This conclusion was corroborated by the TOCSY and HMBC spectra of 1, which allowed the assignment of both 3-O-acylbutyrate fragments (see Tables 1 and 2) and showed connectivities, among others, between the C-19 methylene protons (δ 4.39 and 4.80) and the carboxyl carbon of the first 3'-O-acylbutyrate (δ 169.7 s), between the H-3' proton (δ 5.32) of this substituent and the carboxyl carbon of the second 3"-O-acylbutyrate (δ 169.4 s), and finally, between the H-3" proton (δ 5.21) of this last group and the carbonyl carbon corresponding to the other acetoxyl group (δ 170.6 s) of scupontin A. Moreover, the observed connectivities between the H-3' and H-3" protons and the C-1' and C-1" carboxyl carbons, respectively, further supported the arrangement of the ester groups. All the ¹H- and ¹³C-NMR data and the TOCSY, HMQC, and HMBC spectra were in complete agreement with structure 1 for scupontin A and allowed the unequivocal assignment of all the protons and carbons of this new diterpenoid (see Tables 1 and 2).


Reduction of **1** with LiAlH₄ gave a complex mixture of products from which enantiomerically pure (*S*)-(+)-1,3-butanediol was isolated and identified¹² by its specific rotation value ($[\alpha]^{26}_{D} + 29.2^{\circ})^{13}$ and gas chromatographic analysis on a chiral column (see Experimental Section), thus establishing a 3'*S*,3"*S* absolute configuration for the [3'-[(3"-acetoxybutyryl)oxy]butyryl]-oxy moiety of scupontin A (**1**).

The absolute configuration of the clerodane part of **1** was not ascertained. However, on biogenetic grounds, it is reasonable to assume that it belongs to the neoclerodane series,¹ like scupontin G (**7**, see below), co-occurring in the same plant, and other diterpenoids previously found in *Scutellaria* species.^{6,8,9,14} The molecular rotation values of **1** ($[M]_D - 196^\circ$) and its 2α -*O*-acetyl derivative (**8**, $[M]_D - 265^\circ$) suggested a steroid-like absolute configuration¹⁵ such as in **1** for scupontin A.

Scupontin B (**2**, $C_{32}H_{46}O_{11}$) is the 2-deoxy derivative of scupontin A (**1**, $C_{32}H_{46}O_{12}$). The IR spectrum of **2** was devoid of hydroxyl absorptions, and the only differences observed between the ¹H- and ¹³C-NMR spectra of **1** and **2** were in agreement with the absence in the latter of the 2α -hydroxyl group of the former [**2**: no signal of the H-2 β proton downfield; δ_C at 22.2 t (C-1), 25.0 t (C-2), 32.7 t (C-3), 64.9 s (C-4), and 48.4 d (C-10); **1**: $\delta_{H-2\beta}$ 3.70 m; δ_C at 32.1 t (C-1), 68.7 d (C-2), 41.0 t (C-3), 62.3 s (C-4), and 44.5 d (C-10)]. Moreover, the TOCSY and

Chart 1

() mixture of formation for for

HMBC spectra of scupontin B were only compatible with a structure such as **2** for this diterpenoid.

The 14,15-dihydro derivative of **1** was also present in the Me₂CO extract of *S. pontica.* This diterpenoid (**3**, scupontin C, $C_{32}H_{48}O_{12}$) showed ¹H- and ¹³C-NMR spectra almost identical to those of **1** (see Tables 1 and 2). The spectroscopic differences between these compounds are due to the presence in **3** of a hexahydrofurofuran moiety^{3,6} [C-15 methylene protons at δ 3.85 m, 2H; δ_C 42.0 d (C-13), 32.5 t (C-14), and 68.2 t (C-15)] instead of the tetrahydrofurofuran part of **1** (see above and Tables 1 and 2). As in the case of **1** and **2**, the TOCSY and HMBC spectra of scupontin C confirmed the location and arrangement of its substituents as depicted in formula **3**.

Scupontin D (4) was homogeneous on TLC, and its ¹H-NMR spectrum (see Experimental Section) showed essentially the same signals as those present in the ¹H-NMR spectrum of **1**. The observed differences between the ¹H-NMR spectra of **4** and **1** were in agreement with the former being a 1:1 mixture of the C-15 epimers of the 14,15-dihydro-15-hydroxy derivative of the latter. Thus, in 4 the H-11, H-15, and H-16 protons appeared as pairs of signals¹⁰ [δ 4.57 dd and 3.96 dd, 0.5 H each, J = 11.5, 4.1 Hz (H-11 α in the 15S and 15R epimer, respectively); 5.61 and 5.50, 0.5 H each, both br d, J =4.3, 4.6 Hz, respectively (H-15); 5.81 and 5.76, 0.5 H each, both d, J = 5.4 Hz (H-16)] instead of the single signals corresponding to the H-11, H-15, and H-16 protons of 1 (see above and Table 1); the rest of the spectrum was identical in both compounds.

Treatment of **4** with Ac₂O–pyridine gave **9** as a 7:3 mixture of 15-exo and 15-endo epimers, respectively.¹⁶ Oxidation of **9** with an excess of Jones reagent yielded the 15,16- γ -lactone derivative **10** (C₃₄H₄₈O₁₄, ν_{max} 1790 cm⁻¹; δ_{H-16} 6.01, 1H, d, $J_{16,13} = 5.5$ Hz; δ_{C-15} 175.0 s) by an initial hydrolysis of the acetate group at the C-15

hemiacetalic position, as a consequence of the acidity of the reagent,^{6,9,10} followed by oxidation of the resulting 15,16-hemiacetal group to the corresponding γ -lactone.¹⁰ Treatment of the 2 α -*O*-acetyl derivative (**8**) of scupontin A with Jones' reagent also yielded **10** by oxidation of a 15,16-hemiacetal, which must have been formed from the 14,15-vinyl ether of the tetrahydrofurofuran moiety of **8**, because it is known^{10,17} that the 14,15-double bond of these diterpenoids is very sensitive even to weak acidic conditions. This correlation established the structure depicted in **4** for scupontin D.

Scupontin E (5, C₃₄H₅₀O₁₃) showed hydroxyl absorption (3460 cm⁻¹) in its IR spectrum. Its ¹H- and ¹³C-NMR spectra (Tables 1 and 2, respectively) were almost identical to those of 1 and the observed differences were consistent with the presence in the former of a third 3-hydroxybutyric ester group [$\delta_{\rm H}$ 2.55, 1H, dd, J = 15.7, 5.0 Hz (H_A-2), 2.65, 1H, dd, J = 15.7, 7.9 Hz (H_B-2), 4.20, 1H, br sext (H-3), and 1.22, 3H, d, *J* = 6.5 Hz (Me-4); $\delta_{\rm C}$ 41.0 t (C-2), 65.0 d (C-3), and 22.0 q (C-4); see also Tables 1 and 2] instead of one of the acetates of 1 (see above). The attachment of the acetate group of 5 (δ 1.93, 3H, s) at the C-6 α -position was in agreement with its unusual upfield resonance due to the shielding effect of the spatially close 4α , 18-oxirane, such as in **1**-**4** (see Table 1). Consequently, scupontin E possessed structure 5.

Like scupontin D (4), scupontin F (6) was a 1:1 mixture of the C-15 epimers of a 15,16-hemicetal. Its ¹H-NMR spectrum (see Experimental Section) was very similar to that of 5, both showing the same differences as those found between the ¹H-NMR spectra of 4 and 1 (see above). Treatment of 6 with Ac₂O-pyridine yielded 11 as a 7:3 mixture of the 15-exo and 15-endo forms, respectively.¹⁶ Reaction of 11 with Jones' reagent gave the 15,16- γ -lactone 12 (C₃₈H₅₄O₁₆, ν_{max} 1790 cm⁻¹; δ_{H-16} 6.01, 1H, d, $J_{16,13} = 5.5$ Hz; δ_{C-15} 175.0 s), which was

Table 3.	¹ H- and ¹³ C-NMR	Spectral Data	of Compound 7
----------	---	---------------	---------------

proton(s)	7	$J_{\mathrm{H,H}}$ (Hz)	7	carbon	7	carbon(s)	7
Η-1α	4.39 (td)	1α,2α	5.4	1	65.8 (d)	OBz-6a	
Η-2α	2.14 (m) ^a	$1\alpha, 2\beta$	10.7	2 3	34.5 (t)	COO	166.0 (s)
H-2β	1.48 (dddd)	$1\alpha, 10\beta$	10.7	3	30.5 (t)	1′	129.9 (s)
Η-3α	2.37 (br td)	$2\alpha, 2\beta$	13.4	4	152.3 (s)	2′,6′	129.8 (2C, d)
H-3β	2.20 (m) ^a	$2\alpha, 3\alpha$	4.4	5	44.8 (s)	3′,5′	128.3 (2C, d)
H-6β	6.02 (d)	$2\alpha, 3\beta$	а	6	74.7 (d)	4'	133.2 (d)
Η-7α	5.84 (d)	$2\beta, 3\alpha$	13.9	7	75.4 (d)		
H-10β	1.98 (d)	$2\beta, 3\beta$	4.6	8	77.0 (s)	$OBz-7\beta$	
Η-11α	1.65 (d)	$3\alpha, 3\beta$	13.9	9	40.2 (s)	COO	166.1 (s)
H-11β	2.17 (dd) ^b	3α,18	<0.5	10	46.0 (d)	1″	129.8 (s)
H-14	6.10 (t)	6β,7α	10.0	11	40.0 (t)	2″,6″	129.4 (2C, d)
H _A -16	4.84 (dd)	$11\alpha, 11\beta$	13.7	12	95.2 (s)	3″,5″	128.1 (2C, d
H _B -16	4.91 (dd)	$11\beta, OH(12)^{c}$	2.5	13	172.9 (s)	4‴	132.8 (d)
Me-17	1.11 (3H, s)	14,16A	1.9	14	116.1 (d)		
H _A -18	4.64 (br s)	14,16B	1.9	15	173.3 (s)		
H _B -18	4.79 (br s)	16A,16B	18.1	16	70.6 (t)		
Me-19	1.45 (3H, s)	18A ($W_{1/2}$)	2.7	17	19.8 (q)		
Me-20	1.56 (3H, s)	18B ($W_{1/2}$)	1.8	18	105.4 (t)		
OH-8 β^c	1.60 (s)	2',3'	8.2	19	17.9 (q)		
OH-12 α^c	2.72 (d)	2',4'	1.4	20	21.4 (q)		
H-2′,6′	7.89 (2H, dd)	2',5'	\sim 0				
H-3′,5′	7.34 (2H, t)	3',4'	7.7				
H-4′	7.48 (tt)	2",3"	8.2				
H-2″,6″	7.74 (2H, dd)	2",4"	1.4				
H-3",5"	7.24 (2H, t)	2",5"	~ 0				
H-4″	7.39 (tt)	3",4"	7.7				

^{*a*} These are overlapped signals. ^{*b*} This collapsed into a doublet (J = 13.7 Hz) after addition of D₂O. ^{*c*} Signal disappeared after addition of D₂O.

also obtained from scupontin E (5) by acetylation and subsequent treatment with Jones' reagent (see Experimental Section), thus establishing structure $\bf{6}$ for scupontin F.

Reduction of scupontins B-F (**2**–**6**, respectively, Chart 1) with LiAlH₄, followed by GC analysis of the crude of reactions on a chiral column (see Experimental Section), allowed the identification of enantiomerically pure (*S*)-(+)-1,3-butanediol in all cases. This established a 3*S* absolute configuration for the 3-hydroxybutyric ester groups of these diterpenoids. To the best of our knowledge, this is the first report on the existence of (*S*)-3-hydroxybutyric acid esterifying terpenoid alcohols.

The last of the diterpenoids isolated from the Me₂CO extract of Scutellaria pontica, scupontin G (7), had the molecular formula C₃₄H₃₆O₉, and its IR spectrum showed hydroxyl (3460 cm⁻¹), exocyclic methylene (3080, 1640, **890** cm⁻¹), α , β -unsaturated γ -lactone (3110, 1780, 1640 cm⁻¹), and benzoate group (3070, 1605, 1590, 1745, 1730, 1280, 710 cm⁻¹) absorptions.⁸ The UV spectrum of 7 [λ_{max} nm (log ϵ) 227 (4.47) and 273 (3.27)] corroborated the existence of unsaturated chromophores in this diterpenoid. The ¹H- and ¹³C-NMR spectra of 7 (see Table 3) displayed signals for a β -substituted α , β unsaturated γ -lactone involving the C-13-C-16 carbons^{8,18} [$\delta_{\rm H}$ 6.10, 1H, t, J = 1.9 Hz (H-14), 4.84 and 4.91, 1H each, both dd, $J_{gem} = 18.1$ Hz, $J_{allylic} = 1.9$ Hz (2H-16); $\delta_{\rm C}$ 172.9 s (C-13), 116.1 d (C-14), 173.3 s (C-15), and 70.6 t (C-16)], as well as for a 8 β -hydroxyl group [$\delta_{\rm H}$ 1.11, 3H, s (Me-17), 1.56, 3H, s (Me-20), and 1.60, 1H, s (8β-OH); δ_C 77.0 s (C-8), 40.2 s (C-9), 19.8 q (C-17), and 21.4 q (C-20)], and two benzoyloxy groups (see Table 3) attached to the C-6 α and C-7 β equatorial positions $\delta_{\rm H}$ 6.02 and 5.84, 1H each, both d, J = 10.0 Hz (axial H-6 β and H-7 α protons, respectively); $\delta_{\rm C}$ 74.7 d (C-6) and 75.4 d (C-7)]. These functionalities were identical with those found in scutalpins K and L, two 6α , 7β dibenzoyloxy-8^β-hydroxyneoclerod-13-en-15,16-olide derivatives isolated from Scutellaria alpina.⁸ In addition, scupontin G possessed a 4(18)-exocyclic methylene¹¹ [$\delta_{\rm H}$ 4.64 and 4.79, 1H each, both br s, $W_{1/2} = 2.7$, 1.8 Hz, respectively (2H-18); $\delta_{\rm C}$ 152.3 s (C-4) and 105.4 t (C-18)], a Me-19 group¹¹ ($\delta_{\rm H}$ 1.45, 3H, s; $\delta_{\rm C}$ 17.9 q), and finally a hemiketal function ($\delta_{\rm C}$ 95.2 s) in which the C-12 and C-1 carbons of the neoclerodane framework must be involved, because the C-11 methylene protons of 7 appeared at δ 1.65 and 2.17 as a doublet ($J_{gem} = 13.7$ Hz) and a double doublet (J = 13.7, 2.5 Hz), respectively, the latter being long-range coupled with the hemiketalic hydroxyl group (δ 2.72, 1H, d, ${}^{4}J$ = 2.5 Hz, see also Table 3). Moreover, the closure of this hemiketal grouping with the C-1 β equatorial position was in agreement^{19,20} with the chemical shifts and coupling pattern showed by the H-1 α and H-10 β protons of **7** ($\delta_{H-1\alpha}$ 4.39 td, $J_{1\alpha,2\beta}$ = $J_{1\alpha,10\beta}$ = 10.7 Hz, $J_{1\alpha,2\alpha}$ = 5.4 Hz; $\delta_{H-10\beta}$ 1.98 d, $J_{10\beta,1\alpha}$ = 10.7 Hz; trans-diaxial relationship between these protons).

The TOCSY spectrum of 7 confirmed the abovementioned structural parts and the HMBC spectrum revealed connectivities between the Me-17 protons (δ 1.11 s) and the C-8 and C-9 carbons (δ 77.0 s and 40.2 s, respectively), between the C-18 olefinic protons (δ 4.64 and 4.79) and C-3, C-4, and C-5 (δ 30.5 t, 152.3 s, and 44.8 s, respectively), between the Me-19 protons (δ 1.45 s) and the C-4, C-5, and C-6 (δ 74.7 d) carbons, between the Me-20 protons (δ 1.56 s) and C-8, C-9, and C-10 (δ 46.0 d), as well as correlations of the H-6 β proton (δ 6.02 d) with C-4, C-5, C-7 (δ 75.4 d), C-19 (δ 17.9 q), and a carbonyl carbon belonging to a benzoate group (δ 166.0 s), and between the H-7 α proton (δ 5.84 d) and C-6 and the carboxyl carbon (δ 166.1 s) of the other benzoate. Moreover, the H-10 β proton of 7 (δ 1.98 d) was connected with C-1 (δ 65.8 d), C-2 (δ 34.5 t), C-5, C-6, C-8, C-9, C-19, and C-20 (δ 21.4 q), whereas H-14 (δ 6.10 t) correlated with C-12, C-13, C-15, and C-16 (δ 95.2 s, 172.9 s, 173.3 s, and 70.6 t, respectively) and the H-11 α proton (δ 1.63 d) showed connectivities with the C-9, C-10, C-12, and C-20 carbons.

Nuclerodane Diterpenoids from Scutellaria

From all the above data it was evident that scupontin G possesses the structure depicted in 7, except for its absolute stereochemistry and the configuration of the C-12 chiral center. The absolute stereochemistry of scupontin G was established by using the CD exciton chirality method.²¹ The 6α , 7β -dibenzoyloxy binary system of this compound showed a negative first and a positive second Cotton effect ($\Delta \epsilon_{240}$ –136 and $\Delta \epsilon_{226}$ +62), thus defining a negative chirality and, consequently, a neoclerodane absolute configuration.¹ as it is shown in 7. For the remaining stereogenic center, C-12, observation of a W-type long-range coupling (${}^{4}J = 2.5$ Hz) between the axial 11β -proton (δ 2.17 dd) and the hydroxyl proton of the $12,1\beta$ -hemiketal group (δ 2.72 d) suggested that the C-12 hydroxyl should be in an axial α -orientation and implied a hydrogen bond, probably with the oxygen atom of the 12.1β -hemiketal. The unusual^{11,19} downfield resonances of the axial 11β proton¹⁹ (δ 2.17), deshielded by the axial 8 β -hydroxyl group, and the Me-19 protons^{11,19} (δ 1.45), which could be shifted downfield by their diaxial spatial relationship with the 12α -hydroxyl group, further supported this point and led to the stereochemical assignment shown in structure 7.

From a chemotaxonomic point of view, it is of interest to note that scupontins A–F (**1**–**6**, respectively) are the first neoclerodanes isolated from *Scutellaria* species possessing (*S*)-3-hydroxybutyric ester groups,^{2,3,6–11,18,22,23} and their arrangement in these diterpenoids is a very unusual structural feature in natural products, although (*R*)-poly(3-hydroxybutanoate) of microbial origin is a well-known and useful compound.²⁴

Experimental Section

General Experimental Procedures. Melting points were determined on a Kofler block and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 MC polarimeter. CD measurements were made on a JASCO J-715 instrument. IR spectra (KBr) were obtained on a Perkin-Elmer 681 spectrophotometer. ¹H-NMR spectra were recorded in CDCl₃ solution using a Varian Unity-500 or a Varian XL-300 apparatus at 500 and 300 MHz, respectively, and chemical shifts are reported with respect to residual CHCl₃ (δ 7.25). ¹³C-NMR spectra were recorded at 125.7 or 75.4 MHz in CDCl₃, and chemical shifts are reported with respect to solvent signals (δ_{CDCl3} 77.0). ¹³C-NMR assignments were determined by HMQC and HMBC spectra. MS were recorded in the positive-FAB mode on a JEOL AX 505 HA instrument. Elemental analyses were made with a Carlo Erba EA 1108 apparatus. Merck Si gel no. 7734 (70–230 mesh) deactivated with 10% H_2O , w/v, was used for column chromatography.

Plant Material. *S. pontica* C. Koch. was cultivated in the Orto Botanico dell'Università di Milano, at Tuscolano, Brescia, Italy. Seeds of the species were provided by the Jardin Botanique de Lausanne, Lausanne, Switzerland. Plant materials were collected in August 1994, and voucher specimens have been deposited in the Herbarium of the Dipartimento di Biologia, University of Milan, Italy.

Extraction and Isolation. Dried and finely powdered aerial parts of *S. pontica* (500 g) were extracted with Me₂CO (3×5 L) at room temperature for 1 week. After concentration of the Me₂CO extract *in vacuo* at low temperature (40 °C), 20 g of residue remained. This residue was subjected to dry column chromatography on Si gel with a solvent gradient from 100% petroleum ether (bp 50-70 °C) to 100% EtOAc, and finally with EtOAc-MeOH (9:1). The fraction eluted with EtOAcpetroleum ether (3:2) (120 mg) was subjected to radial chromatography [Si gel disk, CH₂Cl₂-MeOH (24:1) as eluent] to give the following compounds in order of increasing chromatographic polarity: scupontin B (2, 6 mg), scutalpin M⁸ (16 mg), and scupontin G (7, 10 mg). The fraction eluted with EtOAc-petroleum ether (4:1) yielded scutalbin A¹⁰ (23 mg), and the fraction eluted with EtOAc gave scupontin A (1, 210 mg). Finally, the fraction eluted with EtOAc-MeOH (9:1) (1.1 g) was rechromatographed [Si gel column, EtOAc-MeOH (49: 1) as eluent], yielding the following compounds in order of increasing chromatographic polarity: scupontin C (3, 72 mg), scupontin E (5, 10 mg), scupontin D (4, 420 mg), and scupontin F (6, 24 mg).

The previously known compounds, scutalpin M^8 and scutalbin A,¹⁰ were identified by their mp, $[\alpha]_D$, ¹H NMR and mass spectra, and by comparison (mixed mp, TLC) with authentic samples.

Scupontin A (1): (11.S,13.S,16.S,3'.S,3''.S)-6 α -Acetoxy-19-[[3'-[(3''-acetoxybutyryl)oxy]]butyryl]oxy]-4 α ,18;11,16;15,16-triepoxyneoclerod-14-en-2 α -ol: mp 80–95 °C, amorphous solid; [α]²⁰_D –31.5° (*c* 0.225, CHCl₃); IR (KBr) ν_{max} 3470 (OH), 3090, 1620 (vinyl ether), 1740, 1250 (ester groups), 2980, 2880, 1450, 1370, 1180, 1140, 1080, 1060, 1030, 1000, 950, 900, 870, 820 cm⁻¹; ¹H NMR (500 MHz), see Table 1; ¹³C NMR (125.7 MHz), see Table 2; positive FABMS *m*/*z* (rel int) 623 [MH]⁺ (21), 605 [MH – H₂O]⁺ (51), 545 [MH – H₂O – AcOH]⁺ (9), 313 (100), 295 (20), 233 (38), 203 (76), 157 (38), 155 (31), 79 (52), 69 (80), 43 (85); *anal.* found C 61.89%, H 7.29%; C₃₂H₄₆O₁₂ requires C 61.71%, H 7.45%.

Scupontin B (2): (11.5, 13.5, 16.5, 3' *S***,3"** *S***)-6α-Acetoxy-19-[[3'-[(3"-acetoxybutyryl)oxy]butyryl]oxy]-4α,18;11,16;15,16-triepoxyneoclerod-14-ene:** mp 60–70 °C; amorphous solid; $[\alpha]^{20}$ _D –32.6° (*c* 0.221, CHCl₃); IR (KBr) ν_{max} 3100, 1620 (vinyl ether) 1740 br, 1250 (ester groups), 2940, 1450, 1370, 1190, 1140, 1080, 1060, 1010, 970, 950, 900, 860 cm⁻¹; ¹H NMR (300 MHz), see Table 1; ¹³C NMR (125.7 MHz), see Table 2; positive FABMS *m*/*z* (rel int) 607 [MH]⁺ (10), 547 [MH – AcOH]⁺ (12), 389 (6), 359 (6), 315 (14), 183 (35), 129 (45), 69 (100), 43 (85); *anal.* C 63.06%, H 7.71%, calcd for C₃₂H₄₆O₁₁, C 63.33%, H 7.65%.

Scupontin C (3): (11*S*, 13*R*,16*S*, 3'*S*,3"'*S*)-6α-Acetoxy-19-[[3'-[(3"-acetoxybutyryl)oxy]butyryl]oxy]-4α,18;11,16;15,16-triepoxyneoclerodan-2α-ol: mp 40– 55 °C; amorphous solid; $[α]^{19}_D$ –12.2° (*c* 0.115, CHCl₃); IR (NaCl) ν_{max} 3460 (OH), 1740, 1250 (ester groups), 2980, 2880, 1450, 1370, 1190, 1100, 1060, 1030, 930, 900, 880, 840, 820 cm⁻¹; ¹H NMR (300 MHz), see Table 1; ¹³C NMR (75.4 MHz), see Table 2; positive FABMS m/z (rel int) 625 [MH]⁺ (3), 607 [MH – H₂O]⁺ (12), 547 [MH – H₂O – AcOH]⁺ (4), 375 (4), 315 (22), 113 (100), 69 (98), 43 (38); *anal.* C 61.66%, H 7.87%, calcd for C₃₂H₄₈O₁₂, C 61.51%, H 7.75%.

Scupontin D (4): (11*S*,13*S*,15*R* and *S*,16*R*,3'*S*,3"*S*)-6 α -Acetoxy-19-[[3'-[(3''-acetoxybutyryl)oxy]butyryl]oxy]-4 α ,18;11,16-diepoxy-2 α -hydroxyneoclerodane 15,16-hemiacetal: thick oil; mixture 1:1 of the 15*R* and 15*S* forms; ¹H NMR (300 MHz) δ 5.81 and 5.76 (0.5H each, both d, J = 5.4 Hz, H-16), 5.61 (0.5H, br d, J = 4.3 Hz, H-15), 5.50 (0.5H, br d, J = 4.6 Hz, H-15), 5.32 (1H, br sext, H-3'), 5.21 (1H, br sext, H-3''), 4.80 (1H, d, J = 12.2 Hz, H_B-19), 4.62 (1H, dd, J = 11.6, 4.7 Hz, H-6 β), 4.57 (0.5H, dd, J = 11.5, 4.1 Hz, H-11 α in the 15*S* epimer), 4.38 (1H, d, J = 12.2 Hz, H_A-19), 3.96 (0.5H, dd, J = 11.5, 4.1 Hz, H-11 α in the 15*R* epimer), 3.69 (1H, m, $W_{1/2} = 24$ Hz, H-2 β), 3.07 (0.5H, m, $W_{1/2} = 20$ Hz, H-13 β), 2.96 (1H, dd, J = 3.9, 2.3 Hz, H_B-18), 2.84 (0.5H, m, $W_{1/2}=20$ Hz, H-13 β), 2.71–2.40 (4H, m, 2H-2' and 2H-2''), 2.25 (1H, d, J = 3.9 Hz, H_A-18), 2.01 (3H, s, OAc), 1.93 (3H, s, OAc), 1.29 (3H, d, J = 6.1 Hz, Me-4'), 1.26 (3H, d, J = 6.2 Hz, Me-4''), 0.88 (3H, s, Me-20), 0.90 and 0.86 (1.5H each, both d, J = 6.6 Hz, Me-17).

Scupontin E (5): (11*S*,13*S*,16*S*,3'*S*,3''*S*,3'''*S*)-6α-**Acetoxy-19-[[3'-[[3''-((3'''-hydroxybutyryl)oxy]butyryl]oxy]butyryl]oxy]-4α,18;11,16;15,16-triepoxyneoclerod-14-en-2α-ol:** mp 50–60 °C, amorphous solid; $[\alpha]^{22}_{D} - 5.0^{\circ} (c 0.040, CHCl_3)$; IR (NaCl) ν_{max} 3460 (OH), 1620 (vinyl ether), 1735, 1250 (esters), 2980, 2960, 1450, 1370, 1190, 1100, 1060, 1030, 970 cm⁻¹; ¹H NMR (500 MHz), see Table 1; ¹³C NMR (125.7 MHz), see Table 2 in which only the protonated carbons (measured from the HMQC spectrum) are reported; positive FABMS m/z (rel int) 667 [MH]⁺ (8), 649 [MH – H₂O]⁺ (5), 391 (7), 113 (68), 69 (100), 43 (80); *anal.* C 61.12%, H 7.38%, calcd for C₃₄H₅₀O₁₃, C 61.23%, H 7.56%.

Scupontin F (6): (11*S*,13*S*,15*R* and *S*, 16*R*,3'*S*, 3"S,3"S)-6α-Acetoxy-19-[[3'-[[3"-[(3"-hydroxybutyryl]oxy]butyryl]oxy]butyryl]oxy]-4α,18;11,16diepoxy-2a-hydroxyneoclerodane 15,16-hemiacetal: thick oil; mixture (1:1) of the 15*R* and 15*S* forms; ¹H NMR (300 MHz) δ 5.83 and 5.79 (0.5H each, both d, J = 5.4 Hz, H-16), 5.63 (0.5H, br d, J = 4.0 Hz, H-15), 5.52 (0.5H, br d, J = 5.5 Hz, H-15), 5.31 (2H, m, $W_{1/2} =$ 24 Hz, H-3' and H-3"), 4.83 and 4.80 (0.5H each, both d, J = 12.2, H_B-19), 4.64 (1H, dd, J = 11.2, 4.1 Hz, H-6 β), 4.60 (0.5H, dd, J = 11.5, 4.1 Hz, H-11 α in the 15S epimer), 4.42 and 4.39 (0.5H each, both d, J = 12.2 Hz, H_A-19), 4.21 (1H, br sext, H-3^{$\prime\prime\prime$}), 3.98 (0.5H, dd, J = 11.5, 4.1 Hz, H-11 α in the 15*R* epimer), 3.70 (1H, m, $W_{1/2}=20$ Hz, H-2 β), 3.10 and 2.85 (0.5H each, both m, H-13 β), 2.99 (1H, dd, J = 3.9, 2.2 Hz, H_B-18), 2.70–2.40 (6H, m, 2H-2', 2H-2" and 2H-2"), 2.28 (1H, d, J = 3.9 Hz, H_A-18), 1.94 (3H, s, OAc), 1.30 (3H, d, J = 6.2 Hz, Me-4'), 1.28 (3H, d, J = 6.1 Hz, Me-4''), 1.22 (3H, d, J =6.3 Hz, Me-4"''), 0.90 (3H, s, Me-20), 0.87 (3H, d, J =6.4 Hz, Me-17).

Scupontin G (7): $(12R)-6\alpha$, 7β -Bis(benzoyloxy)- 1β , 12-epoxy- 8β , 12 α -dihydroxyneocleroda-4(18), 13dien-15,16-olide: mp 127-129 °C (EtOAc-petroleum ether); $[\alpha]^{22}_{D}$ –91.1° (*c* 0.836, CHCl₃); IR (KBr) ν_{max} 3460 (OH), 3110, 3070, 1605, 1590 (aromatic), 3080, 1640, 890 (exocyclic methylene), 1780 (α , β -unsaturated γ -lactone), 1745, 1730, 1280, 710 (OBz), 2940, 1450, 1320, 1110, 1100, 1070, 1030, 970, 760, cm⁻¹; UV (MeOH) λ_{max} nm (log ϵ) 227 (4.47), 273 (3.27); CD nm ($\Delta \epsilon$) 269 (0), 240 (-136), 231 (0), 226 (+62), 217 (0) (c 0.0342, MeOH); ¹H NMR (500 MHz, 0.017 M in CDCl₃), see Table 3; ¹³C NMR (125.7 MHz), see Table 3; positive FABMS m/z(rel int) 589 $[MH]^+$ (5), 571 $[MH - H_2O]^+$ (4), 327 [MH $-H_2O - 2BzOH]^+$ (5), 207 (13), 105 $[Bz]^+$ (100), 77 (18), 43 (12); anal. C 69.41%, H 6.23%, calcd for C₃₄H₃₆O₉, C 69.36%, H 6.17%.

Preparation of (11*S***,13***S***,16***S***,3'***S***,3"***S***)-2α,6α-Diacetoxy-19-[[3'-[(3"-acetoxybutyryl)oxy]butyryl]-** **oxy**]-4α,**18**;**11**,**16**;**15**,**16**-**triepoxyneoclerod**-**14**-**ene** (8) **from Scupontin A (1).** Treatment of **1** (40 mg) with Ac₂O-pyridine (1:1, 4 mL) at room temperature for 48 h yielded **8** [32 mg after chromatographic purification, Si gel, EtOAc-petroleum ether (1:1) as eluent]. Compound **8**: mp 45-55 °C; amorphous solid; [α]¹⁸_D -39.9° (*c* 0.303, CHCl₃); IR (KBr) ν_{max} 3100, 1620 (vinyl ether), 1740 br, 1250 (esters), 2980, 2880, 1450, 1370, 1190, 1140, 1090, 1060, 1020, 1010, 950, 905, 870 cm⁻¹; ¹H NMR (300 MHz), see Table 1; ¹³C NMR (75.4 MHz), see Table 2; positive FABMS *m*/*z* (rel int) 665 [MH]⁺ (8), 605 [MH - AcOH]⁺ (4), 579 (5), 313 (12), 203 (38), 129 (65), 69 (100), 55 (94), 43 (74), 41 (98); anal. C 61.70%, H 7.06%, calcd for C₃₄H₄₈O₁₃, C 61.42%, H 7.28%.

Preparation of (11.S,13.S,15*R* and *S*,16*R*,3'*S*,3''*S*)-2 α ,6 α -Diacetoxy-19-[[3'-[(3''-acetoxybutyryl)oxy]butyryl]oxy]-4 α ,18;11,16-diepoxyneoclerodane 15,16-(15-*O*-Acetyl)hemiacetal (9) from Scupontin D (4). Treatment of 4 (100 mg) with Ac₂O-pyridine (1:1, 10 mL) at room temperature for 48 h gave 9 (96 mg).

Compound 9: mixture (7:3) of the 15S (exo) and 15R(endo) forms, respectively;¹⁶ ¹H NMR (300 MHz) δ 6.37 (0.7H, d, J = 4.8 Hz, H-15 in the 15S epimer), 6.28(0.3H, d, J = 5.8 Hz, H-15 in the 15R epimer), 5.80 and 5.79 (0.3H and 0.7H, respectively, both d, J = 5.4 Hz, H-16), 5.37-5.19 (2H, m, H-3' and H-3''), 4.85 (1H, d, J = 12.3 Hz, H_B-19), 4.65 (2.3H, m, H-2 β , H-6 β , and H-11 α in the 15*R* epimer), 4.41 (1H, d, J = 12.3 Hz, H_A-19), 4.04 (0.7H, dd, J = 11.4, 4.4 Hz, H-11 α in the 15S epimer), 2.98 (1H, dd, J = 4.0, 2.0 Hz, H_B-18), 2.77– 2.40 (4H, m, 2H-2' and 2H-2"), 2.29 (1H, d, J = 4.0 Hz, H_A-18), 2.03, 2.01, 2.00, and 1.95 (3H each, s, 4OAc), 1.30 (3H, d, J = 6.4 Hz, Me-4'), 1.28 (3H, d, J = 6.3 Hz, Me-4"), 0.97 and 0.95 (0.9H and 2.1H, respectively, both s, Me-20), 0.91 and 0.86 (0.9H and 2.1H, respectively, both d, J = 6.4 Hz, Me-17).

Preparation of (11*S***,13***S***,16***R***,3'***S***,3"***S***)-2α,6α-Diacetoxy-19-[[3'-[(3"-acetoxybutyryl)oxy]butyryl]oxy]-4α,18;11,16-diepoxyneoclerodan-15,16-olide (10) from Compounds 8 and 9. To a solution of 8 (50 mg) in Me₂CO (10 mL) was added an excess of Jones' reagent²⁵ at 0 °C with stirring. After 30 min, the excess of Jones' reagent was destroyed by addition of EtOH, and then the reaction mixture was diluted with H₂O (30 mL). Extraction with CHCl₃ (4 × 10 mL) and workup as usual gave a residue (48 mg) from which pure 10 (40 mg) was obtained after chromatography [Si gel, EtOAc-petroleum ether (1:1) as eluent]. Identical treatment of 9** (60 mg) also yielded **10** (32 mg).

Compound 10: mp 60–70 °C, amorphous solid; $[\alpha]^{19}_{D}$ -25.2° (*c* 0.424, CHCl₃); IR (KBr) ν_{max} 1790 (γ -lactone), 1740, 1250 (esters), 2980, 1450, 1370, 1180, 1100, 1060, 1020, 990, 970, 930, 880 cm⁻¹; ¹H NMR (300 MHz), see Table 1; ¹³C NMR (75.4 MHz), see Table 2; positive FABMS m/z (rel int) 681 [MH]⁺ (30), 635 (18), 484 (18), 311 (25), 237 (20), 157 (38), 69 (100); *anal.* C 60.09%, H 7.14%, calcd for C₃₄H₄₈O₁₄, C 59.97%, H 7.11%.

Preparation of $(11.5, 13.5, 15.8 \text{ and } S, 16.8, 3'.5, 3''.5, 3''.5, 3''.5, 2\alpha, 6\alpha$ -Diacetoxy-19-[[3'-[[3''-[(3'''-acetoxybutyryl)oxy]butyryl]oxy]butyryloxy-4\alpha, 18; 11, 16diepoxyneoclerodan 15, 16-(15-O-Acetyl)hemiacetal (11) from Scupontin F (6). Treatment of 6 (18 mg) with Ac₂O-pyridine (1:1, 4 mL) at room temperature for 48 h gave 11 [18 mg, after chromatographic purification, Si gel, EtOAc-petroleum ether (1:1) as

Nuclerodane Diterpenoids from Scutellaria

eluent]. Compound **11**: mixture (7:3) of the 15S (exo) and 15R (endo) forms, respectively;¹⁶ ¹H NMR (300 MHz) δ 6.36 (0.7H, d, J = 4.7 Hz, H-15 in the 15S epimer), 6.27 (0.3H, d, J = 5.7 Hz, H-15 in the 15Repimer), 5.80 and 5.79 (0.3H and 0.7H, respectively, both d, J = 5.4 Hz, H-16), 5.29 (3H, m, H-3', H-3", and H-3^{'''}), 4.84 (1H, d, J = 12.3 Hz, H_B-19), 4.64 (2.3H, m, H-2 β , H-6 β , and H-11 α in the 15*R* epimer), 4.42 (1H, d, J = 12.3 Hz, H_A-19), 4.02 (0.7H, dd, J = 11.5, 4.2 Hz, H-11 α in the 15*S* epimer), 2.98 (1H, dd, J = 3.9, 2.1Hz, H_B-18), 2.70-2.40 (6H, m, 2H-2', 2H-2", and 2H- $2^{\prime\prime\prime}$), 2.28 (1H, d, J = 3.9 Hz, H_A-18), 2.02, 2.01, 2.00, and 1.95 (3H each, s, 4OAc), 1.30 (3H, d, J = 6.9 Hz, Me-4'), 1.27 (3H, d, J = 6.2 Hz, Me-4''), 1.26 (3H, d, J = 6.5 Hz, Me-4""), 0.97 and 0.95 (0.9H and 2.1H, respectively, both s, Me-20), 0.91 and 0.86 (0.9H and 2.1H, respectively, both d, J = 6.4 Hz, Me-17).

Preparation of (11*S***,13***S***,16***R***,3'***S***,3''***S***,3'''***S***)-2α,6α-Diacetoxy-19-[[3'-[[3''-[(3'''-acetoxybutyryl)oxy]butyryl]oxy]butyryl]oxy]-4α,18;11,16-diepoxyneoclerodan-15,16-olide (12) from Compound 11 and Scupontin E (5).** Treatment of 11 (15 mg) with Jones' reagent,²⁵ as previously described for obtaining 10, yielded 12 [8 mg, after chromatographic purification, Si gel, EtOAc-petroleum ether (1:1) as eluent].

Scupontin E (**5**, 3 mg) was treated with Ac_2O -pyridine, and the peracetate, without characterization, was treated with Jones' reagent²⁵ giving 1 mg of a compound identical (¹H NMR and TLC) with **12**.

Compound **12**: mp 50–60 °C, amorphous solid; $[\alpha]^{22}_{\rm D}$ –15.5° (*c* 0.071, CHCl₃); IR (KBr) $\nu_{\rm max}$ 1790 (γ -lactone), 1735, 1250 (esters), 2980, 1450, 1370, 1190, 1100, 1060, 1025, 990, 970, 930 cm⁻¹; ¹H NMR (500 MHz), see Table 1; ¹³C NMR (125.7 MHz), see Table 2; positive FABMS m/z (rel int) 767 [MH]⁺ (10), 580 (8), 447 (7), 233 (17), 141 (22), 115 (65), 69 (100); *anal.* C 59.26%, H 7.21%, calcd for C₃₈H₅₄O₁₆, C 59.50%, H 7.10%.

(S)-(+)-1,3-Butanediol from Scupontin A (1). To a solution of 1 (100 mg) in anhydrous THF (20 mL) was added a solution of LiAlH₄ (400 mg) in THF (50 mL). The mixture was refluxed during 4 h, cooled at -20 °C, and a saturated aqueous solution of Na₂SO₄ was added dropwise to the reaction mixture. The white precipitate was filtered through a pad of Celite, and the solids washed with abundant CH₂Cl₂-MeOH mixture (3:1). The residue (75 mg) obtained by evaporation of the solvents was subjected to column chromatography (Si gel, EtOAc as eluent) giving 21 mg of the less polar constituent (TLC) of the reduction mixture. This compound, a colorless thick oil, showed IR and ¹H-NMR spectra identical with those reported¹² for (\pm) -1,3butanediol, and it had $[\alpha]^{26}{}_D + 29.2^\circ$ (c 0.963, CHCl₃) [lit.¹³ for (*S*)-(+)-1,3-butanediol: $[\alpha]^{20}_{D}$ +30 ± 2°]. Comparison with an authentic sample¹³ of (S)-(+)-1,3butanediol by GC (HRGC MEGA 2 Series Fisons instrument) using a chiral capillary column (SE-54/heptakis-2.3-di-*O*-pentyl- β -cyclodextrin; length 25 m, diameter 0.25 mm; temperature: column 70 °C, injector 250 °C) confirmed the identity.

(*S*)-(+)-1,3-Butanediol from Scupontins B-F (2– 6). A sample of each compound (2, 2 mg; 3, 20 mg; 4, 50 mg; 5, 2 mg; and 6, 8 mg) was treated with LiAlH₄ as described for 1. The reduction mixtures were analyzed by GC as above and enantiomerically pure (*S*)-(+)-1,3-butanediol was identified in all the samples. **Acknowledgment.** We thank Dr. A. Rivera and Dr. J. A. Hueso, SmithKline Beecham Pharmaceuticals (Centro de Investigación Básica, Madrid), for the mass spectra. This work was supported by funds from MURST and CNR (Italy), DGICYT (Spain, grants PB93–0154 and PB94–0104), and the bilateral project CNR-CSIC between ICTPN (Italy) and Instituto de Química Orgánica (Spain).

References and Notes

- (1) Although the hydrocarbon skeleton of these diterpenoids is biogenetically derived from an *ent*-labdane, and they should be named *ent*-clerodanes, we prefer to use the term neoclerodane proposed by Rogers et al. (Rogers, D.; Unal, G. G.; Williams, D. J.; Ley, S. V.; Sim, G. A.; Joshi, B. S.; Ravindranath, K. R. *J. Chem. Soc., Chem. Commun.* **1979**, 97–99) because it is the nomenclature used in the majority of the articles published on this subject since 1979.
- (2) Anderson, J. C.; Blaney, W. M.; Cole, M. D.; Fellows, L. E.; Ley, S. V.; Sheppard, R. N.; Simmonds, M. S. J. *Tetrahedron Lett.* **1989**, *30*, 4737–4740.
- (3) Cole, M. D.; Anderson, J. C.; Blaney, W. M.; Fellows, L. E.; Ley, S. V.; Sheppard, R. N.; Simmonds, M. S. J. *Phytochemistry* **1990**, *29*, 1793–1796.
- (4) Blaney, W. M.; Cuñat, A. C.; Ley, S. V.; Montgomery, F. J.; Simmonds, M. S. J. Tetrahedron Lett. 1994, 35, 4861–4864.
- (5) Cuñat, A. C.; Díez-Martín, D.; Ley, S. V.; Montgomery, F. J. J. Chem. Soc., Perkin Trans. 1 1996, 611–620.
- (6) Rodríguez, B.; de la Torre, M. C.; Rodríguez, B.; Bruno, M.; Piozzi, F.; Savona, G.; Simmonds, M. S. J.; Blaney, W. M.; Perales, A. *Phytochemistry* **1993**, *33*, 309–315.
- (7) Cole, M. D.; Bridge, P. D.; Dellar, J. E.; Fellows, L. E.; Cornish, M. C.; Anderson, J. C. *Phytochemistry* **1991**, *30*, 1125–1127.
- (8) de la Torre, M. C.; Rodríguez, B.; Bruno, M.; Piozzi, F.; Savona, G.; Vassallo, N.; Servettaz, O. *Phytochemistry* **1995**, *38*, 181– 187.
- (9) Rodríguez, B.; de la Torre, M. C.; Rodríguez, B.; Gómez-Serranillos, P. *Phytochemistry* **1996**, *41*, 247–253.
- (10) Bruno, M.; Piozzi, F.; Rodríguez, B.; de la Torre, M. C.; Vassallo, N.; Servettaz, O. *Phytochemistry* **1996**, *42*, 1059–1064.
- (11) Esquivel, B.; Flores, E.; Hernández-Ortega, S.; Toscano, R. A. Phytochemistry 1995, 38, 175–179.
- (12) For the IR and ¹H NMR spectral data of (±)-1,3-butanediol see *The Aldrich Library of Infrared Spectra;* Pouchert, C. J. Ed., Aldrich Chemical: Milwaukee, WI, 1981; 71G; and *The Aldrich Library of ¹³C and ¹H FT NMR Spectra;* Pouchert, C. J.; Behnke, J., Eds., Aldrich Chemical: Milwaukee, WI, 1993; Vol. 1, 196A and B.
- (13) *Fluka Catalogue*; Fluka Chemie AG: Buchs, Switzerland, 1995; p 283; compound no. 18 938.
- (14) Bozov, P. I.; Malakov, P. Y.; Papanov, G. Y.; de la Torre, M. C.; Rodríguez, B.; Perales, A. *Phytochemistry* **1993**, *34*, 453–456.
- (15) Fieser, L. F.; Fieser, M. *Steroids*; Reinhold Publishing: New York, 1959; pp 177–180, and references therein.
- (16) Acetylation of a 1:1 mixture of the C-15 epimers of 4 and 6 gave a 7:3 mixture of the C-15 epimers of 9 and 11, respectively, in which the 15-exo form (15*S* in 9 and 11) was the major constituent. This behavior may be attributed to the easy esterification of the more sterically accessible 15*R*-exo form in 4 and 6, and to the existence of an equilibrium between the opened and closed forms of the 15,16-hemiacetal.
- (17) Barton, D. H. R.; Cheung, H. T.; Cross, A. D.; Jackman, L. M.; Martin-Smith, M. J. Chem. Soc. 1961, 5061–5073.
- (18) de la Torre, M. C.; Rodríguez, B.; Bruno, M.; Malakov, P. Y.; Papanov, G. Y.; Piozzi, F.; Savona, G. *Phytochemistry* **1993**, *34*, 1589–1594.
- (19) Chen, T.-B.; Galinis, D. L.; Wiemer, D. F. J. Org. Chem. 1992, 57, 862–866.
- (20) Huneck, S.; Asakawa, Y.; Taira, Z.; Cameron, A. F.; Connolly, J. D.; Rycroft, D. S. *Tetrahedron Lett.* **1983**, *24*, 115–116.
- (21) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy. Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, 1983.
- (22) Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243-287.
- (23) Rodríguez-Hahn, L.; Esquivel, B.; Cárdenas, J. Prog. Chem. Org.
- Nat. Prod. 1994, 63, 107–196.
- (24) Mori, K.; Miyake, M. Tetrahedron 1987, 43, 2229-2239.
- (25) Kleinfelter, D. C.; Schleyer, P. R. Org. Synth. 1962, 42, 79-82.

NP960714G